A Set-Checking Algorithm for Mining Maximal
Frequent Itemsets from Data Streams

Ye-In Chang, Meng-Hsuan Tsai, Chia-En Li, and Pei-Ying Lin

Dept. of Computer Science and Engineering, NatiGual Yat-Sen University,
Kaohsiung, Taiwan, R.O.C.

Abstract. Online mining the maximal frequent itemsets ovatadstreams is an
important problem in data mining. In order to som@ging maximal frequent
itemsets from data streams using the Landmark Windwdel, Maoet al.
propose the INSTANT algorithm. The structure of tNSTANT algorithm is
simple and it can save much memory space. Butéistidng time in mining the
maximal frequent itemsets. When the new transadtimmes, the number of
comparisons between the old transactions of theAINNS algorithm is too
much. Therefore, in this paper, we propose theCheicking algorithm to mine
frequent itemsets from data streams using the Lankiwindow model. We
use the structure of the lattice to store our imfation. The structure of the
lattice records the subset relationship betweenctiilel node and the parent
node. From our simulation results, we show thatpfeeess time of our Set-
Checking algorithm is faster than that of the INSTIAAIgorithm.

Keywords: Data Stream, Itemset, Landmark Window Model, Lettidaximal
Frequent Itemset.

1 Introduction

Traditional database management systems expetatallto be managed within some
forms of persistent data sets. For many recenticgijans, the concept of a data
stream, possibly infinite, is more appropriate thapersistent data set. A data stream
is an order sequence of transactions that arrivestimely order. Different from data
in traditional static databases, data streams kavdollowing characteristics [1-6].
First, they are continuous, unbounded, and usugaltye with high speed. Second, the
volume of data streams is large and usually withopen end. Third, the data
distribution in streams usually changes with tidemaximal frequent itemset is the
itemset which is not the subset of other frequesthset and the support is large or
equal to the mining support. Therefore, the resfiltnaximal frequent itemsets is
more compact than the result of frequent item&gie. INSTANT algorithm [5] uses

a compact data structure to mine maximal frequemisets from data streams based
on the Landmark Window. In the Landmark Window mp#aowledge discovery is
performed based on the values between the begirtiimgy and the present. The

UCorresponding author: Ye-In Chang (E-mail: changyi@ese.nsysu.edu.tw).

advantage of using the Landmark Window model ig¢ tha results are correct as
compared to the other models. The structure ofRI8TANT algorithm is simple so
that it can save the memory space. However, ip#éneof the itemset comparison, the
INSTANT algorithm will take long time. Thereforey the paper, we propose the Set-
Checking algorithm. In our structure, we add timk lbetween the set and its subsets
to show the relation between itemsets. When the mmamsaction comes, we will
check the relation between the new transactionthadold transaction. Because of
this links between the set and the subset, thexetven advantages. First, we can
decrease the number of comparisons between the treawgaction and the old
transactions. Second, when the support incredsesattice structure does not change.
From our simulation results, we show that the psecBme of our Set-Checking
algorithm is faster than that of the INSTANT algom. The rest of the paper is
organized as follows. Section 2 gives a surveynfiming association rules related
problem. Section 3 presents the proposed Set-Qigeitgorithm. In Section 4, we
study the performance. Finally, Section 5 givescteclusion.

2 TheRdated Work

In this section, we describe some well-known daitaimg algorithms for association
rules related problems in the traditional datatzaskdata streams [1-6].

Maximal frequent itemsets mining is one of the maogtortant research issues in
data mining. Take Transaction Databas the Fig. 1-(a) as an example, Fig. 1-(b)
shows the frequent itemsets of Transaction Datafasehere the value of the
minimal support is 2. In Fig. 1-(c), large items&@D” and “ABC” is a maximal
frequent itemset, because there is no supersehwhbictains it. [temsetAB” is not a
maximal frequent itemset, because the frequentsig¢ABC” contains it.

L1 A:3
B:2
TID Items c:3
1 ABC D:2 -
2 CD L2 AB : 2 ::g ACB[():.‘22
3 ABC AC:3 :
4 ACD BC:2
CD:2
L3 ABC : 2
(@ () (c)

Fig. 1. An example: (a) Transaction Databds€b) Frequent itemsets of Transaction Database
T with the minimal support = 2; (c) Maximal frequetgmsets of Transaction Datab&s®ith
the minimal support = 2.

The INSTANT algorithm [5] is a single-phase algonit for mining maximal
frequent itemsets from data streams. Given a cootis data stream, a user-specified
minimum support count, and a shedding condition, the INSTANT algorithm
consists of four steps: Step 1: generate a saetseto from the current transaction
of the data stream. Step 2: form new frequent iedsnand update the set of frequent
itemsets. Step 3: modify information about infregiuelements and their supports

based om. Step 4: execute a shedding plan to maintain Beficiency and memory
usage.

3 TheSet-Checking Algorithm

One of the well-known models for data streams éslthndmark Window model. In
this section, we present our algorithm based o.#meimark Window model.

3.1 TheProposed Algorithm

We first define some basic definitions and notatiamd then describe how to use
them to find the maximal frequent itemsets and oiga the maximal frequent
itemsets in a lattice. According to the characterisf the maximal frequent itemsets,
we propose the Set-Checking algorithm. We can clieekelation between the new
transaction and old transactions, and then buiéd l#ittice. The variables used are
defined as followsminsup is the minimal supportSup is a transaction’s support.
f listis the maximal frequent itemsets.

Our algorithm has three steps. Step 1: transfomitémset to the bit-pattern. Step
2: check the relation between new transaction dddtransaction. There are five
cases in the relations. Case 1: equivalent. Ttis oaly updates the support of the old
transaction. Case 2: superset. This case will epttet support of the old transaction
and the old transaction becomes the child of thve tnensaction. The new transaction
will be inserted into the lattice. Case 3: sub3&e new transaction will become the
child of old transaction. Case 4: intersection. rEhare two situations. Case 4-1: the
node is the intersection of the old transaction tr&lnew transaction is not in the
lattice. This case will insert the new transactéon intersected node. Case 4-2: the
node which is the intersection of the old trangactind the new transaction is in the
lattice. This case will insert the new transactmu update the support of intersected
node. Case 5: empty set. The new transaction wilhberted into the lattice. Step 3:
examine which transaction is the maximal frequésmsets. If the frequent node is
not the subset or equal to theéist, we can add the frequent nodef thst and delete
the node which is the subset of the frequent noma f list.

3.2 DataStructure

In our algorithm, we propose a lattice structurdneTlattice structure has two
advantages. First, we can know the relation betwbennew transaction and the
present transactions easily. Second, we can upHatesupport of the transaction
efficiency. We also build_list to store the maximal frequent itemsets. The kattic
structure contains the root, nodes, and child-liftke root is the start point. It has no
information. When a new transaction is coming, teetto search them from the root.
The nodes are infrequent itemsets. Each node hae sdormation: (1)Bit-Pattern
represents itemset. (Zup represents the support of the itemset. The childik the
node link to subset nodes. Building the child-llmks many advantages. First, we can
check the node's relation and insert the node timotree easily. Second, we can
increase the node's support easily. Our lattiagctire has two characteristics. First,
the high level nodes are the subset of low leveleso Second, the supports of high
level nodes are larger than that of the low lewelas.

3.3 Datalnsertion

We use an example to illustrate our algorithm. Riga) shows an example of the
data stream. The maximal length of bit-length iandl theminsup is 6. Transaction
Tid; {1, 2, 3} is the first transaction of the dataestm. The root does not have a child,
so the itemset is inserted into the root’s chilcedily as shown in Fig. 2-(b). When
transactionTid, {3, 4, 5} comes, we will check whether the itemisein the lattice or
not. Obviously, transactiofid, is not in the lattice. Then, we will check theaten
between transactiofiid; and transactioid,. We find thatTid, intersects withTid;
and intersected node {3} is in the lattice. So nf@lebecomes the child of node {1, 2,
3} and node {3, 4, 5}. The support of node {1, 3, Bhich is in the lattice is
increased. When we process the last child, wetifi$eéy {3, 4, 5} into the lattice as
shown in Fig. 2-(c). When transactidids; {3, 6} comes, we find that the intersected
node {3} is in the lattice. Node {3} becomes thdldhof node {3, 6} and the support
of node {3} is increased. Consider when the nevaddateam comes, the support of
each node in the lattice is increased at once. Becaansactionids {3, 6} is not in
the lattice. When we process the last child, weringansactioids {3, 6} into the
lattice as shown in Fig. 3-(a). Finally, the lattiwill be built as shown in Fig. 3-(b).

Tid | Itemse Bit-Pattel root
1 1,2,: 11100(
2 |3,4,°¢ 00111(root 12,3 345
3 3,€ 00100: 111000, Sup(1) 001110, Sup(1)
4 1,2, 3,4, 11111(/ T
5 |2 01000(- 3
6 1, 2, 3, 4, 11111¢(111000, Sup(1) 001000, Sup(2)
() (b) (©)

Fig. 2. An example: (a) an example of the data streamin@®rtion of transactiomid, into the
lattice; (c) insertion of transactidmd, into the lattice.
root root

1.2.3.4.5 3.6
1,23 345 36 111110, Sup(1)

111000, Sup(1)001110, Sup(1)001001, Sup(1) - -

111000, Sup(2) 001110, Sup(2

3
001000, Sup(3) 00100(3), Sup(4)
(a) (b)

Fig. 3. Data insertion: (a) insertion of transactifids into the lattice; (b) the final lattice.

34 TheMaximal Frequent Itemsets

When the support of the transaction is larger thaequal to the minimal support, we
can add this transaction tdist. Fig. 2-(a) shows an example of the data streaeh. L
the minimal support = 3. When transactiid; {1, 2, 3} andTid, {3, 4, 5} comes,
the lattice will be built as shown in Fig. 2-(c).héh transactioids; {3, 6} comes,

the support of item {3} becomes 3. It equals th@imal support. So we can add item
{3} to f_list asf _list -> 3(001000).

4 Performance

In this section, we describe how to generate tmthgyic data which will be used in
the simulation. Then, we study the performancehefINSTANT algorithm and our
proposal Set-Checking algorithm.

4.1 The Simulation M odel

We describe the way to generate synthetic tramsactata from the IBM synthetic
data developed by Agrawat al. [1]. The parameters used in the generation of the
synthetic data are followsT||is the average size of transactiolN&I||is the maximum
size of transactiond|] is the average size of maximal potentially fraguemsets.D)|
is the number of transactions amdl|| is the maximum size of potentially frequent
itemsets.3D| is the size of added data ammr is the number of the correlation level.
First, the length of a transaction is determinedh®y Poisson Distribution with a
mean which i equal to T|. The size of a transaction is between 1 afif].| The
transaction is repeatedly assigned items from akebtentially maximal frequent
itemsetsk, while the length of the transaction does not edcthe generated length.
Then, the length of an itemset iR is determined according to the Poisson
Distribution with a meam which is equal tol|. The size of each potentially frequent
itemset is between 1 andl|. To model the phenomenon that frequent itemd&s o
have common items, some fraction of items in subseyitemsets are chosen from
the previous itemset generated. We use an expatigrdistributed random variable
with a mean which is equal to tleerrelation level, to decide this fraction for each
itemset. Thecorrelation level was set to 0.5. The remaining items are chosen
randomly. Each itemset iR has an associated weight that determines the Ipititpa
that this itemset will be chosen. The weight issghofrom an exponential distribution
with a mean equal to 1.

4.2 Experiment Results

In this section, we show the experiment resultg. Bi(a) shows the comparison of
the processing time under different minimum supmpoifhe synthetic data is
T3.MT10.110.MI20.D10k. The" number of item is 10@6d the minimum support
threshold is changed from 0.2% to 1%. We can i dlata then add 1k data to the
data which we build. From the figure, we can fihdttthe Set-Checking algorithm is
faster than the INSTANT algorithm. Because the nemdd the itemset comparisons
of the Set-Checking algorithm is less than thathefINSTANT algorithm. Fig. 4-(b)
shows the comparison of the processing time undiéereht size of data. The
minimum support threshold is 0.4% and the numbéteafs is 1000.

e [
60 "
—=Set-Checking —m—Set-Checking

Time
(sec)
Time
(sec)

30 - s
o L A/

0.2 0.4 0.6 08 1 5 10 15 20 75

minimal support(%) size of data(k)

(a) (b)

Fig. 4. A comparison: (a) a comparison of the processing tunder different minimum
supports; (b) a comparison of the processing tindeudifferent size of the data.

5 Conclusion

In this paper, we have proposed the Set-Checkiggrithm that could efficiently
mining maximal frequent itemsets in data stream&elVupdating the transaction
data streams occur, how to maintain these rulésiaifly is the key point of stream
mining. The simulation results have shown thatpgteposed Set-Checking algorithm
outperforms the INSTANT algorithm.

Acknowledgments. The research was supported in part by the Nati@u¢nce
Council of Republic of China under Grant No. NSC-A221-E-110-091-MY 2.

References

1. Agrawal, R., Srikant, R.: Fast Algorithm for Miningsgociation Rules in Large Databases.
In: 20th International Conference on Very Large dDd@ases, pp. 487--499. Morgan
Kaufmann Publishers, San Francisco (1994)

2. Li, H., Zhang, N.: Mining Maximal Frequent ltemsé&ser a Stream Sliding Window. In:
IEEE Youth Conference on Information Computing antt@@mmunications, pp. 110--113.
IEEE Press, New York (2010)

3. Li, JW,, Lee, G.Q.: Mining Frequent Itemsets oldata Streams Using Efficient Window
Sliding Techniques. The International Journal op&x Systems with Applications, vol. 36,
no. 2, pp. 1466--1477. Pergamon Press, New Yor@qR0

4. Lin, K.C., Liao, I.E., Chen, Z.S.: An Improved Fremi Pattern Growth Method for
Mining Association Rules. The International JouroBExpert Systems with Applications,
vol. 38, no. 5, pp. 5154--5161. Pergamon Press, Xank (2011)

5. Mao, G., Wu, X., Zhu, X., Chen, G., Liu, C.: Miningadimal Frequent Itemsets from Data
Streams. Journal of Information Science, vol. 38,3 pp. 251--262. Sage Publication, CA
(2007)

6. Xin, JW., Yang, G.Q., Sun, J.Z., Zhang, Y.P.: AMNAlgorithm for Discovery Maximal
Frequent Itemsets Based on Binary Vector Sets. Ih: IBternational Conference on
Machine Learning and Cybernetics, pp. 1120--112EHPress, New York (2006)

