
A Set-Checking Algorithm for Mining Maximal 
Frequent Itemsets from Data Streams 

Ye-In Chang∗, Meng-Hsuan Tsai, Chia-En Li, and Pei-Ying Lin 
 

Dept. of Computer Science and Engineering, National Sun Yat-Sen University, 
Kaohsiung, Taiwan, R.O.C. 

Abstract. Online mining the maximal frequent itemsets over data streams is an 
important problem in data mining. In order to solve mining maximal frequent 
itemsets from data streams using the Landmark Window model, Mao et al. 
propose the INSTANT algorithm. The structure of the INSTANT algorithm is 
simple and it can save much memory space. But it takes long time in mining the 
maximal frequent itemsets. When the new transaction comes, the number of 
comparisons between the old transactions of the INSATNT algorithm is too 
much. Therefore, in this paper, we propose the Set-Checking algorithm to mine 
frequent itemsets from data streams using the Landmark Window model. We 
use the structure of the lattice to store our information. The structure of the 
lattice records the subset relationship between the child node and the parent 
node. From our simulation results, we show that the process time of our Set-
Checking algorithm is faster than that of the INSTANT algorithm. 
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1   Introduction 

Traditional database management systems expect all data to be managed within some 
forms of persistent data sets. For many recent applications, the concept of a data 
stream, possibly infinite, is more appropriate than a persistent data set. A data stream 
is an order sequence of transactions that arrives in a timely order. Different from data 
in traditional static databases, data streams have the following characteristics [1-6]. 
First, they are continuous, unbounded, and usually come with high speed. Second, the 
volume of data streams is large and usually with an open end. Third, the data 
distribution in streams usually changes with time. A maximal frequent itemset is the 
itemset which is not the subset of other frequent itemset and the support is large or 
equal to the mining support. Therefore, the result of maximal frequent itemsets is 
more compact than the result of frequent itemsets. The INSTANT algorithm [5] uses 
a compact data structure to mine maximal frequent itemsets from data streams based 
on the Landmark Window. In the Landmark Window model, knowledge discovery is 
performed based on the values between the beginning time and the present. The 
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advantage of using the Landmark Window model is that the results are correct as 
compared to the other models. The structure of the INSTANT algorithm is simple so 
that it can save the memory space. However, in the part of the itemset comparison, the 
INSTANT algorithm will take long time. Therefore, in the paper, we propose the Set-
Checking algorithm. In our structure, we add the link between the set and its subsets 
to show the relation between itemsets. When the new transaction comes, we will 
check the relation between the new transaction and the old transaction. Because of 
this links between the set and the subset, there are two advantages. First, we can 
decrease the number of comparisons between the new transaction and the old 
transactions. Second, when the support increases, the lattice structure does not change. 
From our simulation results, we show that the process time of our Set-Checking 
algorithm is faster than that of the INSTANT algorithm. The rest of the paper is 
organized as follows. Section 2 gives a survey for mining association rules related 
problem. Section 3 presents the proposed Set-Checking algorithm. In Section 4, we 
study the performance. Finally, Section 5 gives the conclusion. 

2   The Related Work 

In this section, we describe some well-known data mining algorithms for association 
rules related problems in the traditional database and data streams [1-6]. 

Maximal frequent itemsets mining is one of the most important research issues in 
data mining. Take Transaction Database T in the Fig. 1-(a) as an example, Fig. 1-(b) 
shows the frequent itemsets of Transaction Database T, where the value of the 
minimal support is 2. In Fig. 1-(c), large itemset “CD” and “ABC” is a maximal 
frequent itemset, because there is no superset which contains it. Itemset “AB” is not a 
maximal frequent itemset, because the frequent itemset “ABC” contains it. 

TID Items 
1 ABC 
2 CD 
3 ABC 
4 ACD 

 

L1 A：3 
B：2 
C：3 
D：2 

L2 AB：2 
AC：3 
BC：2 
CD：2 

L3 ABC：2 
 

L2 CD：2 
L3 ABC：2 

 

(a) (b) (c) 

Fig. 1. An example: (a) Transaction Database T; (b) Frequent itemsets of Transaction Database 
T with the minimal support = 2; (c) Maximal frequent itemsets of Transaction Database T with 
the minimal support = 2. 

The INSTANT algorithm [5] is a single-phase algorithm for mining maximal 
frequent itemsets from data streams. Given a continuous data stream, a user-specified 
minimum support count δ, and a shedding condition, the INSTANT algorithm 
consists of four steps: Step 1: generate a sorted itemset α from the current transaction 
of the data stream. Step 2: form new frequent itemsets and update the set of frequent 
itemsets. Step 3: modify information about infrequent elements and their supports 
based on α. Step 4: execute a shedding plan to maintain search efficiency and memory 
usage. 
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3   The Set-Checking Algorithm 

One of the well-known models for data streams is the Landmark Window model. In 
this section, we present our algorithm based on the Landmark Window model. 

3.1   The Proposed Algorithm 

We first define some basic definitions and notations and then describe how to use 
them to find the maximal frequent itemsets and organize the maximal frequent 
itemsets in a lattice. According to the characteristic of the maximal frequent itemsets, 
we propose the Set-Checking algorithm. We can check the relation between the new 
transaction and old transactions, and then build the lattice. The variables used are 
defined as follows. minsup is the minimal support. Sup is a transaction’s support.  
f_list is the maximal frequent itemsets. 

Our algorithm has three steps. Step 1: transform the itemset to the bit-pattern. Step 
2: check the relation between new transaction and old transaction. There are five 
cases in the relations. Case 1: equivalent. This case only updates the support of the old 
transaction. Case 2: superset. This case will update the support of the old transaction 
and the old transaction becomes the child of the new transaction. The new transaction 
will be inserted into the lattice. Case 3: subset. The new transaction will become the 
child of old transaction. Case 4: intersection. There are two situations. Case 4-1: the 
node is the intersection of the old transaction and the new transaction is not in the 
lattice. This case will insert the new transaction and intersected node. Case 4-2: the 
node which is the intersection of the old transaction and the new transaction is in the 
lattice. This case will insert the new transaction and update the support of intersected 
node. Case 5: empty set. The new transaction will be inserted into the lattice. Step 3: 
examine which transaction is the maximal frequent itemsets. If the frequent node is 
not the subset or equal to the f_list, we can add the frequent node to f_list and delete 
the node which is the subset of the frequent node from f_list. 

3.2   Data Structure 

In our algorithm, we propose a lattice structure. The lattice structure has two 
advantages. First, we can know the relation between the new transaction and the 
present transactions easily. Second, we can update the support of the transaction 
efficiency. We also build f_list to store the maximal frequent itemsets. The lattice 
structure contains the root, nodes, and child-link. The root is the start point. It has no 
information. When a new transaction is coming, we start to search them from the root. 
The nodes are infrequent itemsets. Each node has some information: (1) Bit-Pattern 
represents itemset. (2) Sup represents the support of the itemset. The child-link is the 
node link to subset nodes. Building the child-link has many advantages. First, we can 
check the node's relation and insert the node into the tree easily. Second, we can 
increase the node's support easily. Our lattice structure has two characteristics. First, 
the high level nodes are the subset of low level nodes. Second, the supports of high 
level nodes are larger than that of the low level nodes. 



3.3   Data Insertion 

We use an example to illustrate our algorithm. Fig. 2-(a) shows an example of the 
data stream. The maximal length of bit-length is 5 and the minsup is 6. Transaction 
Tid1 {1, 2, 3} is the first transaction of the data stream. The root does not have a child, 
so the itemset is inserted into the root’s child directly as shown in Fig. 2-(b). When 
transaction Tid2 {3, 4, 5} comes, we will check whether the itemset is in the lattice or 
not. Obviously, transaction Tid2 is not in the lattice. Then, we will check the relation 
between transaction Tid1 and transaction Tid2. We find that Tid2 intersects with Tid1 
and intersected node {3} is in the lattice. So node {3} becomes the child of node {1, 2, 
3} and node {3, 4, 5}. The support of node {1, 2, 3} which is in the lattice is 
increased. When we process the last child, we insert Tid2 {3, 4, 5} into the lattice as 
shown in Fig. 2-(c). When transaction Tid3 {3, 6} comes, we find that the intersected 
node {3} is in the lattice. Node {3} becomes the child of node {3, 6} and the support 
of node {3} is increased. Consider when the new data stream comes, the support of 
each node in the lattice is increased at once. Because transaction Tid3 {3, 6} is not in 
the lattice. When we process the last child, we insert transaction Tid3 {3, 6} into the 
lattice as shown in Fig. 3-(a). Finally, the lattice will be built as shown in Fig. 3-(b). 

Tid Itemset Bit-Patten 
1 1, 2, 3 111000 
2 3, 4, 5 001110 
3 3, 6 001001 
4 1, 2, 3, 4, 5 111110 
5 2 010000 
6 1, 2, 3, 4, 5 111110 

 

 

 
(a) (b) (c) 

Fig. 2. An example: (a) an example of the data stream; (b) insertion of transaction Tid1 into the 
lattice; (c) insertion of transaction Tid2 into the lattice.  

  
(a) (b) 

Fig. 3. Data insertion: (a) insertion of transaction Tid3 into the lattice; (b) the final lattice. 

3.4   The Maximal Frequent Itemsets 

When the support of the transaction is larger than or equal to the minimal support, we 
can add this transaction to f_list. Fig. 2-(a) shows an example of the data stream. Let 
the minimal support = 3. When transaction Tid1 {1, 2, 3} and Tid2 {3, 4, 5} comes, 
the lattice will be built as shown in Fig. 2-(c). When transaction Tid3 {3, 6} comes, 
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the support of item {3} becomes 3. It equals the minimal support. So we can add item 
{3} to f_list as f_list -> 3(001000). 

4   Performance 

In this section, we describe how to generate the synthetic data which will be used in 
the simulation. Then, we study the performance of the INSTANT algorithm and our 
proposal Set-Checking algorithm. 

4.1   The Simulation Model 

We describe the way to generate synthetic transaction data from the IBM synthetic 
data developed by Agrawal et al. [1]. The parameters used in the generation of the 
synthetic data are follows. |T| is the average size of transactions. |MT| is the maximum 
size of transactions. |I| is the average size of maximal potentially frequent itemsets. |D| 
is the number of transactions and |MI| is the maximum size of potentially frequent 
itemsets. |SD| is the size of added data and corr is the number of the correlation level. 

First, the length of a transaction is determined by the Poisson Distribution with a 
mean which is µ equal to |T|. The size of a transaction is between 1 and |MT|. The 
transaction is repeatedly assigned items from a set of potentially maximal frequent 
itemsets F, while the length of the transaction does not exceed the generated length. 
Then, the length of an itemset in F is determined according to the Poisson 
Distribution with a mean µ which is equal to |I|. The size of each potentially frequent 
itemset is between 1 and |MI|. To model the phenomenon that frequent itemsets often 
have common items, some fraction of items in subsequent itemsets are chosen from 
the previous itemset generated. We use an exponentially distributed random variable 
with a mean which is equal to the correlation level, to decide this fraction for each 
itemset. The correlation level was set to 0.5. The remaining items are chosen 
randomly. Each itemset in F has an associated weight that determines the probability 
that this itemset will be chosen. The weight is chosen from an exponential distribution 
with a mean equal to 1. 

4.2   Experiment Results 

In this section, we show the experiment results. Fig. 4-(a) shows the comparison of 
the processing time under different minimum supports. The synthetic data is 
T3.MT10.I10.MI20.D10k. The` number of item is 1000 and the minimum support 
threshold is changed from 0.2% to 1%. We can build 9k data then add 1k data to the 
data which we build. From the figure, we can find that the Set-Checking algorithm is 
faster than the INSTANT algorithm. Because the number of the itemset comparisons 
of the Set-Checking algorithm is less than that of the INSTANT algorithm. Fig. 4-(b) 
shows the comparison of the processing time under different size of data. The 
minimum support threshold is 0.4% and the number of items is 1000. 



 
(a) (b) 

Fig. 4. A comparison: (a) a comparison of the processing time under different minimum 
supports; (b) a comparison of the processing time under different size of the data. 

5   Conclusion 

In this paper, we have proposed the Set-Checking algorithm that could efficiently 
mining maximal frequent itemsets in data streams. When updating the transaction 
data streams occur, how to maintain these rules efficiently is the key point of stream 
mining. The simulation results have shown that the proposed Set-Checking algorithm 
outperforms the INSTANT algorithm. 
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