
A Set-Checking Algorithm for Mining Maximal
Frequent Itemsets from Data Streams

Ye-In Chang∗, Meng-Hsuan Tsai, Chia-En Li, and Pei-Ying Lin

Dept. of Computer Science and Engineering, National Sun Yat-Sen University,
Kaohsiung, Taiwan, R.O.C.

Abstract. Online mining the maximal frequent itemsets over data streams is an
important problem in data mining. In order to solve mining maximal frequent
itemsets from data streams using the Landmark Window model, Mao et al.
propose the INSTANT algorithm. The structure of the INSTANT algorithm is
simple and it can save much memory space. But it takes long time in mining the
maximal frequent itemsets. When the new transaction comes, the number of
comparisons between the old transactions of the INSATNT algorithm is too
much. Therefore, in this paper, we propose the Set-Checking algorithm to mine
frequent itemsets from data streams using the Landmark Window model. We
use the structure of the lattice to store our information. The structure of the
lattice records the subset relationship between the child node and the parent
node. From our simulation results, we show that the process time of our Set-
Checking algorithm is faster than that of the INSTANT algorithm.

Keywords: Data Stream, Itemset, Landmark Window Model, Lattice, Maximal
Frequent Itemset.

1 Introduction

Traditional database management systems expect all data to be managed within some
forms of persistent data sets. For many recent applications, the concept of a data
stream, possibly infinite, is more appropriate than a persistent data set. A data stream
is an order sequence of transactions that arrives in a timely order. Different from data
in traditional static databases, data streams have the following characteristics [1-6].
First, they are continuous, unbounded, and usually come with high speed. Second, the
volume of data streams is large and usually with an open end. Third, the data
distribution in streams usually changes with time. A maximal frequent itemset is the
itemset which is not the subset of other frequent itemset and the support is large or
equal to the mining support. Therefore, the result of maximal frequent itemsets is
more compact than the result of frequent itemsets. The INSTANT algorithm [5] uses
a compact data structure to mine maximal frequent itemsets from data streams based
on the Landmark Window. In the Landmark Window model, knowledge discovery is
performed based on the values between the beginning time and the present. The

∗ Corresponding author: Ye-In Chang (E-mail: changyi@mail.cse.nsysu.edu.tw).

advantage of using the Landmark Window model is that the results are correct as
compared to the other models. The structure of the INSTANT algorithm is simple so
that it can save the memory space. However, in the part of the itemset comparison, the
INSTANT algorithm will take long time. Therefore, in the paper, we propose the Set-
Checking algorithm. In our structure, we add the link between the set and its subsets
to show the relation between itemsets. When the new transaction comes, we will
check the relation between the new transaction and the old transaction. Because of
this links between the set and the subset, there are two advantages. First, we can
decrease the number of comparisons between the new transaction and the old
transactions. Second, when the support increases, the lattice structure does not change.
From our simulation results, we show that the process time of our Set-Checking
algorithm is faster than that of the INSTANT algorithm. The rest of the paper is
organized as follows. Section 2 gives a survey for mining association rules related
problem. Section 3 presents the proposed Set-Checking algorithm. In Section 4, we
study the performance. Finally, Section 5 gives the conclusion.

2 The Related Work

In this section, we describe some well-known data mining algorithms for association
rules related problems in the traditional database and data streams [1-6].

Maximal frequent itemsets mining is one of the most important research issues in
data mining. Take Transaction Database T in the Fig. 1-(a) as an example, Fig. 1-(b)
shows the frequent itemsets of Transaction Database T, where the value of the
minimal support is 2. In Fig. 1-(c), large itemset “CD” and “ABC” is a maximal
frequent itemset, because there is no superset which contains it. Itemset “AB” is not a
maximal frequent itemset, because the frequent itemset “ABC” contains it.

TID Items
1 ABC
2 CD
3 ABC
4 ACD

L1 A：3
B：2
C：3
D：2

L2 AB：2
AC：3
BC：2
CD：2

L3 ABC：2

L2 CD：2
L3 ABC：2

(a) (b) (c)

Fig. 1. An example: (a) Transaction Database T; (b) Frequent itemsets of Transaction Database
T with the minimal support = 2; (c) Maximal frequent itemsets of Transaction Database T with
the minimal support = 2.

The INSTANT algorithm [5] is a single-phase algorithm for mining maximal
frequent itemsets from data streams. Given a continuous data stream, a user-specified
minimum support count δ, and a shedding condition, the INSTANT algorithm
consists of four steps: Step 1: generate a sorted itemset α from the current transaction
of the data stream. Step 2: form new frequent itemsets and update the set of frequent
itemsets. Step 3: modify information about infrequent elements and their supports
based on α. Step 4: execute a shedding plan to maintain search efficiency and memory
usage.

3

3 The Set-Checking Algorithm

One of the well-known models for data streams is the Landmark Window model. In
this section, we present our algorithm based on the Landmark Window model.

3.1 The Proposed Algorithm

We first define some basic definitions and notations and then describe how to use
them to find the maximal frequent itemsets and organize the maximal frequent
itemsets in a lattice. According to the characteristic of the maximal frequent itemsets,
we propose the Set-Checking algorithm. We can check the relation between the new
transaction and old transactions, and then build the lattice. The variables used are
defined as follows. minsup is the minimal support. Sup is a transaction’s support.
f_list is the maximal frequent itemsets.

Our algorithm has three steps. Step 1: transform the itemset to the bit-pattern. Step
2: check the relation between new transaction and old transaction. There are five
cases in the relations. Case 1: equivalent. This case only updates the support of the old
transaction. Case 2: superset. This case will update the support of the old transaction
and the old transaction becomes the child of the new transaction. The new transaction
will be inserted into the lattice. Case 3: subset. The new transaction will become the
child of old transaction. Case 4: intersection. There are two situations. Case 4-1: the
node is the intersection of the old transaction and the new transaction is not in the
lattice. This case will insert the new transaction and intersected node. Case 4-2: the
node which is the intersection of the old transaction and the new transaction is in the
lattice. This case will insert the new transaction and update the support of intersected
node. Case 5: empty set. The new transaction will be inserted into the lattice. Step 3:
examine which transaction is the maximal frequent itemsets. If the frequent node is
not the subset or equal to the f_list, we can add the frequent node to f_list and delete
the node which is the subset of the frequent node from f_list.

3.2 Data Structure

In our algorithm, we propose a lattice structure. The lattice structure has two
advantages. First, we can know the relation between the new transaction and the
present transactions easily. Second, we can update the support of the transaction
efficiency. We also build f_list to store the maximal frequent itemsets. The lattice
structure contains the root, nodes, and child-link. The root is the start point. It has no
information. When a new transaction is coming, we start to search them from the root.
The nodes are infrequent itemsets. Each node has some information: (1) Bit-Pattern
represents itemset. (2) Sup represents the support of the itemset. The child-link is the
node link to subset nodes. Building the child-link has many advantages. First, we can
check the node's relation and insert the node into the tree easily. Second, we can
increase the node's support easily. Our lattice structure has two characteristics. First,
the high level nodes are the subset of low level nodes. Second, the supports of high
level nodes are larger than that of the low level nodes.

3.3 Data Insertion

We use an example to illustrate our algorithm. Fig. 2-(a) shows an example of the
data stream. The maximal length of bit-length is 5 and the minsup is 6. Transaction
Tid1 {1, 2, 3} is the first transaction of the data stream. The root does not have a child,
so the itemset is inserted into the root’s child directly as shown in Fig. 2-(b). When
transaction Tid2 {3, 4, 5} comes, we will check whether the itemset is in the lattice or
not. Obviously, transaction Tid2 is not in the lattice. Then, we will check the relation
between transaction Tid1 and transaction Tid2. We find that Tid2 intersects with Tid1
and intersected node {3} is in the lattice. So node {3} becomes the child of node {1, 2,
3} and node {3, 4, 5}. The support of node {1, 2, 3} which is in the lattice is
increased. When we process the last child, we insert Tid2 {3, 4, 5} into the lattice as
shown in Fig. 2-(c). When transaction Tid3 {3, 6} comes, we find that the intersected
node {3} is in the lattice. Node {3} becomes the child of node {3, 6} and the support
of node {3} is increased. Consider when the new data stream comes, the support of
each node in the lattice is increased at once. Because transaction Tid3 {3, 6} is not in
the lattice. When we process the last child, we insert transaction Tid3 {3, 6} into the
lattice as shown in Fig. 3-(a). Finally, the lattice will be built as shown in Fig. 3-(b).

Tid Itemset Bit-Patten
1 1, 2, 3 111000
2 3, 4, 5 001110
3 3, 6 001001
4 1, 2, 3, 4, 5 111110
5 2 010000
6 1, 2, 3, 4, 5 111110

(a) (b) (c)

Fig. 2. An example: (a) an example of the data stream; (b) insertion of transaction Tid1 into the
lattice; (c) insertion of transaction Tid2 into the lattice.

(a) (b)

Fig. 3. Data insertion: (a) insertion of transaction Tid3 into the lattice; (b) the final lattice.

3.4 The Maximal Frequent Itemsets

When the support of the transaction is larger than or equal to the minimal support, we
can add this transaction to f_list. Fig. 2-(a) shows an example of the data stream. Let
the minimal support = 3. When transaction Tid1 {1, 2, 3} and Tid2 {3, 4, 5} comes,
the lattice will be built as shown in Fig. 2-(c). When transaction Tid3 {3, 6} comes,

5

the support of item {3} becomes 3. It equals the minimal support. So we can add item
{3} to f_list as f_list -> 3(001000).

4 Performance

In this section, we describe how to generate the synthetic data which will be used in
the simulation. Then, we study the performance of the INSTANT algorithm and our
proposal Set-Checking algorithm.

4.1 The Simulation Model

We describe the way to generate synthetic transaction data from the IBM synthetic
data developed by Agrawal et al. [1]. The parameters used in the generation of the
synthetic data are follows. |T| is the average size of transactions. |MT| is the maximum
size of transactions. |I| is the average size of maximal potentially frequent itemsets. |D|
is the number of transactions and |MI| is the maximum size of potentially frequent
itemsets. |SD| is the size of added data and corr is the number of the correlation level.

First, the length of a transaction is determined by the Poisson Distribution with a
mean which is µ equal to |T|. The size of a transaction is between 1 and |MT|. The
transaction is repeatedly assigned items from a set of potentially maximal frequent
itemsets F, while the length of the transaction does not exceed the generated length.
Then, the length of an itemset in F is determined according to the Poisson
Distribution with a mean µ which is equal to |I|. The size of each potentially frequent
itemset is between 1 and |MI|. To model the phenomenon that frequent itemsets often
have common items, some fraction of items in subsequent itemsets are chosen from
the previous itemset generated. We use an exponentially distributed random variable
with a mean which is equal to the correlation level, to decide this fraction for each
itemset. The correlation level was set to 0.5. The remaining items are chosen
randomly. Each itemset in F has an associated weight that determines the probability
that this itemset will be chosen. The weight is chosen from an exponential distribution
with a mean equal to 1.

4.2 Experiment Results

In this section, we show the experiment results. Fig. 4-(a) shows the comparison of
the processing time under different minimum supports. The synthetic data is
T3.MT10.I10.MI20.D10k. The` number of item is 1000 and the minimum support
threshold is changed from 0.2% to 1%. We can build 9k data then add 1k data to the
data which we build. From the figure, we can find that the Set-Checking algorithm is
faster than the INSTANT algorithm. Because the number of the itemset comparisons
of the Set-Checking algorithm is less than that of the INSTANT algorithm. Fig. 4-(b)
shows the comparison of the processing time under different size of data. The
minimum support threshold is 0.4% and the number of items is 1000.

(a) (b)

Fig. 4. A comparison: (a) a comparison of the processing time under different minimum
supports; (b) a comparison of the processing time under different size of the data.

5 Conclusion

In this paper, we have proposed the Set-Checking algorithm that could efficiently
mining maximal frequent itemsets in data streams. When updating the transaction
data streams occur, how to maintain these rules efficiently is the key point of stream
mining. The simulation results have shown that the proposed Set-Checking algorithm
outperforms the INSTANT algorithm.

Acknowledgments. The research was supported in part by the National Science
Council of Republic of China under Grant No. NSC-101-2221-E-110-091-MY2.

References

1. Agrawal, R., Srikant, R.: Fast Algorithm for Mining Association Rules in Large Databases.
In: 20th International Conference on Very Large Data Bases, pp. 487--499. Morgan
Kaufmann Publishers, San Francisco (1994)

2. Li, H., Zhang, N.: Mining Maximal Frequent Itemsets Over a Stream Sliding Window. In:
IEEE Youth Conference on Information Computing and Telecommunications, pp. 110--113.
IEEE Press, New York (2010)

3. Li, J.W., Lee, G.Q.: Mining Frequent Itemsets over Data Streams Using Efficient Window
Sliding Techniques. The International Journal of Expert Systems with Applications, vol. 36,
no. 2, pp. 1466--1477. Pergamon Press, New York (2009)

4. Lin, K.C., Liao, I.E., Chen, Z.S.: An Improved Frequent Pattern Growth Method for
Mining Association Rules. The International Journal of Expert Systems with Applications,
vol. 38, no. 5, pp. 5154--5161. Pergamon Press, New York (2011)

5. Mao, G., Wu, X., Zhu, X., Chen, G., Liu, C.: Mining Maximal Frequent Itemsets from Data
Streams. Journal of Information Science, vol. 33, no. 3, pp. 251--262. Sage Publication, CA
(2007)

6. Xin, J.W., Yang, G.Q., Sun, J.Z., Zhang, Y.P.: A New Algorithm for Discovery Maximal
Frequent Itemsets Based on Binary Vector Sets. In: 5th International Conference on
Machine Learning and Cybernetics, pp. 1120--1124. IEEE Press, New York (2006)

